ЭТАПЫ РАЗВИТИЯ, ОБЛАСТИ СОВРЕМЕННОГО ПРИМЕНЕНИЯ, АСПЕКТЫ БЕЗОПАСНОСТИ ПОЗИТРОННОЙ ЭМИССИОННОЙ ТОМОГРАФИИ
Секция: 4. Медицинские науки
XVIII Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: естественные и медицинские науки»
ЭТАПЫ РАЗВИТИЯ, ОБЛАСТИ СОВРЕМЕННОГО ПРИМЕНЕНИЯ, АСПЕКТЫ БЕЗОПАСНОСТИ ПОЗИТРОННОЙ ЭМИССИОННОЙ ТОМОГРАФИИ
Актуальность выбранной нами темы заключается в том, что развитие метода ПЭТ, основанного на измерении биохимической активности организма по локальной концентрации радиофармпрепарата в ткани пациента, привело к его широкому применению в клинической диагностике и в медико-биологических исследованиях. Кроме того, стремительно возрастающий интерес к этому методу диагностики обусловлен негативной статистикой неврологических, кардиологических и онкологических заболеваний
Такие методы как KT, МРТ и УЗИ, предоставляют информацию о структурных изменениях в тканях. В то же время, метод ПЭТ дает возможность оценить функцию органа или ткани, которая в большинстве случаев развиваются значительно раньше, чем появляются структурные изменения. В этой связи ПЭТ имеет широкое применение, — от онкологии (для раннего и точного выявления безопасным путём злокачественных опухолей и их метастазов любых локализаций), до характеристики многих жизненно важных процессов в кардиологии, в неврологии и нейрохирургии.
Целью настоящего исследования явилось изучение этапов развития ПЭТ в России и за рубежом, физических основ метода, современных областей и аспектов безопасности его использования, с учетом отечественного и зарубежного опыта, на основании проведенного систематического обзора современной отечественной и зарубежной научной литературы.
Для достижения цели исследования, нами были поставлены следующие задачи:
- Провести анализ тематических статей в наиболее цитируемых в электронных базах данных PubMed и Google Scholar отечественных журналов.
- Проанализировать, с помощью в международной базы данных систематических обзоров Cochrane Database, — систематические обзоры по заданной теме.
- Систематизировать полученные данные из современных источников отечественной и зарубежной научной литературы, в соответствии с со следующими разделами: историей развития ядерной медицины и ПЭТ, физическими основами метода ПЭТ, определением места ПЭТ среди методов диагностики в ядерной медицине, с учетом его преимуществ и недостатков, современным состояние развития ПЭТ в РФ и за рубежом, аспектами безопасности применения метода ПЭТ.
- Сформулировать выводы по полученным результатам проведенного систематического обзора.
Материал и методы исследования. В ходе проведенного систематического обзора, поиск литературы осуществлялся с использованием электронных баз данных наиболее цитируемых в международных научных базах данных отечественных журналов «Медицинская визуализация», «Врач и информационные технологии», «Вестник РАМН», «Вестник рентгенологии и радиологии» (за последние 5 лет), а также зарубежных электронных баз данных PubMed, Google Scholar и Cochrane Database. Проанализировано 578 источников, в том числе 86 отечественных статей, 50 зарубежных мета-анализов, 442 зарубежных реферата. Соответствующие теме исследования источники включались в обзор, если они касались истории развития, использования, аспектов безопасности ПЭТ, и были написаны на русском или английском языке.
В результате проведенного исследования, было установлено следующее: история развития ядерной медицины в целом и ПЭТ в частности, — берет свое начало с открытия явления радиоактивности было сделано Г. Беккерелем в 1896 г., а открытие а -, р- и у- излучения — М. Кюри-Склодовской, в 1898 г. Далее, венгерский ученый Д. Хевеши, предложивший в 1913 году использовать в биологических исследованиях метод меченых атомов, считается отцом радиоизотопной диагностики. Спустя четыре десятилетия, в 1951 году, Бенедикт Кассен создал для целей радионуклидной диагностики, прямолинейный сканер, который более чем на двадцать лет стал главным инструментом ядерной медицины. Вскоре после этого, в 1953 году, Гордон Броунелл создаёт в Массачусетском технологическом институте первый прототип ПЭТ-сканера, а в 1958 году Хэл Энджер усовершенствовал создал первую «сцинтиляционную камеру». А в 1961 году Джеймс Робертсон создал в Брукхейвенской национальной лаборатории ПЭС-томограф современного типа, после чего, в середине 70-х гг., в зарубежных клиниках появились первые, серийно выпускаемые, установки для однофотонной эмиссионной компьютерной томографии (ОФЭКТ) и ПЭТ.
Физическими основами метода ПЭТ являются закон сохранения зарядовой четности, аннигиляция и рождение пар. Возможность аннигиляция и рождение пар, была предсказана в 1930 г., П. Дираком, и подтверждена в 1933 г. Ирен и Фредерик Жолио-Кюри, а современное истолкование аннигиляции и рождение пар дает квантовая теория поля. В физике термином аннигиляция, буквально означающим «исчезновение», «уничтожение», — именуют процесс, в котором частица и отвечающая ей античастица превращаются в электромагнитное излучение — фотоны или в другие частицы — кванты физического поля иной природы. Современное истолкование аннигиляции и рождение пар дает квантовая теория поля. Рождение пары — это обратный аннигиляции процесс, при котором в результате взаимодействия электромагнитных или других полей одновременно возникают частица и античастица. Основываясь на экспериментальных знаниях, ученые нашли применение этим процессам в ядерной медицине, базируясь на законе сохранения зарядовой четности, который лежит в основе методов диагностики и лечения в ядерной медицине, и записывается в виде реакций:
е+ и е¯,е+ е¯→ɣ+ɣ; е+ и е¯→2ɣ
Учитывая физические основы метода ПЭТ, создание позиционно-чувствительного детектора для регистрации у-квантов с энергией 511 кэВ является одной из ключевых задач разработки отечественного позитрон-эмиссионного томографа, предназначенного для диагностики на ранней стадии онкологических, неврологических и кардиологических заболеваний. Разрабатываемый детектор должен иметь высокую эффективность регистрации у-квантов для того, чтобы в обследовании можно было использовать радиофармпрепараты с меньшей активностью или с более коротким временем полураспада.
Каждый комплекс ПЭТ состоит из циклотрона, на котором вырабатывается радиоактивный изотоп, например, F-18, модулей синтеза, на которых получают радиофармпрепарат. Использование ПЭТ с радиофармпрепаратами: 18F-фтордезоксиглюкозой, 11С-метионином, 11С-бутиратом, 13N-аммонием, — позволяет достичь принципиально нового уровня диагностики опухолей головного мозга, рака легкого, молочной железы, злокачественных лимфом, при дифференциальной диагностике заболеваний в неврологии, нейрохирургии и психиатрии (паркинсонизм, эпилепсия, деменция, тревожно-депрессивные расстройства), а также для ранней диагностики кардиологических проблем, в частности, нарушений кровоснабжения и метаболизма миокарда при ишемической болезни сердца.
Среди методов диагностики в ядерной медицине, ПЭТ занимает одно из ведущих мест наряду с такими методами как МРТ, КТ, УЗИ, иммуносцинтиграфия, однофотонная эмиссионная компьютерная томография (ОФЭКТ) с моноклональными антителами, и ПЭТ. Основным преимуществом ПЭТ, определяющим его особое место среди методов лучевой и радионуклидной диагностики, является то, что ПЭТ, в отличие от KT и МРТ, отражающих структурные изменения в пораженных тканях, дает возможность оценить функцию органа или ткани, которая в большинстве случаев развиваются значительно раньше.
Преимуществами ПЭС перед другими диагностическими методами являются также его высокая диагностическая точность и широта (одно исследование заменяет собой несколько различных видов диагностики, можно охватить все органы сразу), минимальные болевые ощущения и побочные эффекты, диагностика заболеваний на ранних стадиях, исключение неэффективных или необязательных оперативных или медикаментозных методов лечения. Недостатки ПЭТ в том, что метод может применяться лишь при опухолях малого размера, он дорог, и имеется далеко не везде, а для более полной картины в большинстве случаев требуется сопоставить результаты ПЭТ с данными других исследований (КТ, МРТ, УЗИ и др.).
Современное состояние развития ПЭТ различное в разных странах мира, учитывая высокую стоимость и технологическую ресурсоемкость метода. По степени обеспеченности методами ядерной медицины принято выделять следующие группы государств:
- Высокообеспеченные и быстро развивающиеся — США, Япония, Германия, Бельгия, северная Италия; Франция, Испания, Турция;
- Развивающиеся: Канада, Бразилия, Португалия, Польша, Венгрия, Марокко, Словакия, Великобритания, Китай, Россия, Индия;
- Не принявшие решения по развитию метода — Алжир, Тунис, страны СНГ, Южная Америка и др.
Обеспеченность в РФ методами ядерной медицины пока относительно низкая — чуть более единицы на миллион жителей (для сравнения: Северная Америка — 33, Восточная Европа — 2,2, Латинская Америка — 2,1). В 2012 г. в РФ действовало 24 ПЭС-томографа (при норме 143). В 2009 г. в рамках Нацпроекта «Здоровье» в России стартовала Национальная онкологическая программа, предусматривающая модернизацию оборудования региональных онкодиспансеров, а постановлением Правительства РФ № 91 от 17 февраля 2011 г. была утверждена ФЦП «Развитие фармацевтической и медицинской промышленности Российской Федерации на период до 2020 г. и дальнейшую перспективу».
Сегодня на нужды ядерной медицины тратится в среднем свыше 50 % радиоактивных изотопов в мире. Россия входит в число 5 крупнейших производителей сырьевых медицинских изотопов в мире. В России производится 20 наименований радифоармпрепаратов. Ведущий научный центр, отвечающий за разработку технологий радиофармпрепаратов, методов их контроля и проведение испытаний — Федеральный медицинский биофизический центр им. Бурназяна. РФП также производятся в Москве (на заводе «Медрадиопрепарат» ФМБА РФ, в Научном центре сердечно-сосудистой хирургии им. Бакулева, в Центральной клинической больнице Управления делами Президента РФ), в Обнинске (в филиале НИИ им. Карпова и НИИ им. Лейпунского), в Санкт-Петербурге (в Радиевом институте им. Хлопина, в Институте мозга человека им. Бехтеревой, в Российский научном центре радиологии и хирургических технологий), в Томске (в НИИ ядерной физики), в Снежинске (Челябинской обл.) и в Димитровграде (Ульяновской области).
В Приволжском федеральном округе (ПФО), занимающем почти 7 % территории России, функционирует Центр ядерной медицины в Казани, рассчитанный на 6 000 пациентов в год, планируется строительство центров ПЭТ в Димитровграде и в Уфе. В Самаре строительство центра ПЭТ также планируется в ближайшие 5 лет в рамках частно-государственного партнерства, на базе Самарского областного клинического онкодиспансера.
Важную роль играют аспекты безопасности ПЭТ, как для пациентов, так и для персонала. ПЭТ проводится в стационаре; за 90 минут до обследования пациент получает инъекцию специальной субстанции, которая за это время распространяется в организме и собирается в «целевой» ткани. Затем он укутывается в камере прибора, и должен лежать совершенно неподвижно во время исследования. Позитронные излучатели, используемые для ПЭТ, имеют чрезвычайно короткий период полураспада от 2 часов до нескольких минут, поэтому доза облучения, которое получает пациент во время исследования очень небольшая, и обычно не вызывает побочных эффектов. Радиоактивный препарат противопоказан беременным или кормящим женщинам.
Радиационная безопасность пациентов обеспечивается комплексом мер: выбор оптимальной активности радиофармпрепарата, отсутствие нарушений технологий его введения, выбор оптимальных параметров и режимов работы аппаратуры, оптимальное размещение пациентов с введенными препаратом, ожидающими очереди (с целью минимизации наружного облучения других больных), надежная иммобилизация пациента в ходе исследования, инструктаж больного после исследований, для ускорения выведения препарата (пить много жидкости; соблюдение не превышения установленных контрольных уровней внутреннего облучения пациента.
Предельные допустимые уровни (ПДУ) внутреннего облучения пациента при ПЭТ составляют: 250 мЗв в год для пациентов с онкологическим заболеванием, с подозрением на него или при проведении ПЭТ по жизненным показаниям; 50 мЗв в год для пациентов с остальными заболеваниями; 5 мЗв в год при проведении исследований с научными или профилактическими целями.
Радиационная безопасность персонала в подразделениях радионуклидной диагностики обеспечивается комплексом мер: предотвращение попадания радиоактивности в организм работающих при приготовлении, транспортировке, введении пациентам радиофармпрепаратов, а также при сборе, удалении, уничтожении радиоактивных отходов. Это обеспечивается строгим соблюдением правил работы с открытыми источниками излучений, в том числе и применением средств индивидуальной и коллективной радиационной защиты.
По данным многолетних наблюдений службы радиационной безопасности Российского онкологического научного центра им. Н.Н. Блохина РАМН, среднее значение дозы персонала при эффективной диагностике составляет 1,47 мЗв в год, в диапазоне 0,83—6,24 мЗв в год.
Выводы.
- История развития ядерной медицины и ПЭТ начинаясь от открытия явления радиоактивности Г. Беккерелем в 1896 г., до создания 1961 г. Джеймсом Робертсон ПЭС-томографа современного типа, продолжается в настоящее время в связи со стремительным развитием информационных технологий и радионуклидной диагностики.
- Физическими основами метода ПЭТ являются реакция аннигиляции и рождение пар. Создание позиционно-чувствительного детектора для регистрации у-квантов с энергией 511 кэВ является одной из ключевых задач разработки отечественного позитрон-эмиссионного томографа, предназначенного для диагностики онкологических, неврологических и кардиологических заболеваний. — на ранней стадии.
- Основным преимуществом ПЭТ, определяющим его особое место среди методов лучевой и радионуклидной диагностики, является то, что ПЭТ дает возможность оценить функцию органа или ткани, которая в большинстве случаев развиваются значительно раньше структурных изменений.
- По степени обеспеченности методами ядерной медицины Россия относится к развивающимся государствам. В то же время, РФ входит в число 5 крупнейших производителей сырьевых медицинских изотопов в мире, производя 20 радиофармпрепаратов из 200, для диагностики in vivo. В ПФО на сегодня имеется три центра ПЭТ: в Казани, в Димитровграде и в Уфе. В Самаре планируется строительство центра ПЭТ в ближайшие 5 лет на базе СОКОД в рамках ЧГП.
- Радиационная безопасность пациентов и персонала обеспечивается строгим соблюдением правил работы с открытыми источниками излучений, в том числе и применением средств индивидуальной и коллективной радиационной защиты. ПДУ внутреннего облучения пациента при ПЭТ не должно выходить за пределы диапазона от 5 мЗв до 250 мЗв в год. Среднее значение дозы персонала не должно превышать 1,47 мЗв в год, в диапазоне 0,83—6,24 мЗв в год.
Список литературы:
- Арнсвальд Д., Верник М. Эмиссионная томография: основы ПЭТ и ОФЭКТ. Москва: Техносфера, 2009.
- Гранов А.М. Интервенционная радиология в онкологии (пути развития и технологии). Научно-практическое издание — 2 изд. Фолиант: СПб, , 2013. 560 с.
- Климанов В.А. Физика ядерной медицины. Часть 1. Москва: НИЯУ МИФИ, 2012.
- Линденбратен Л.Д., Королюк И.П. Медицинская радиология (Основы лучевой диагностики и терапии) — М, Медицина,2000 — 672 с.
- Лишманова Ю.Б., Чернова В.И. Национальное руководство по радионуклидной диагностике. Томск STT: 2010.
- Наркевич Б.Я., Костылев В.А. ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОЙ МЕДИЦИНЫ. АМФ — Пресс Москва 2001.
- Позитронная эмиссионная томография: Руководство для врачей; Под ред. А.М. Гранова, Л.А. Тютина. СПб. Фолиант, 2008.
- Федеральное медико-биологическое агентство. Ядерная медицина — проект будущего. Журнал Медицина: целевые проекты № 10, 2011.
- Чумаков В. Поставить диагноз поможет атом. Журнал «В мире науки». Февраль 2012.
- Botta F., Mairani A., Hobbs R.F., et al.Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images. Phys Med Biol. 2013 Nov 7; 58 (22):8099—8120.
- Dale L. Bailey, David W. Townsend, Peter E. Valk, Michael N. Maisey. Positron Emission Tomography-Basic Sciences / Позитронно-эмиссионная томография-Основы. — Издательство.: Springer, 2005.
- Gallivanone F., Canevari C., Gianolli L.et al. Partial Volume Effect Correction Tailored for (18) F-FDG-PET Oncological Studies. Biomed Res Int. 2013; 2013:780458. doi: 10.1155/2013/780458. Epub 2013 Sep 19.
- Shyn Р.В. Interventional Positron Emission Tomography / Computed Tomography: State-of-the-Art. Tech Vase Interv Radiol. 2013 Sep; 16 (3):182-90. doi: 10.1053/j.tvir.2013.02.014.
- Uehara H., Tsutani Y., Okumura S., Nakayama H., Adachi S., Yoshimura M., Miyata Y., Okada M. Prognostic Role of Positron Emission Tomography and High-Resolution Computed Tomography in Clinical Stage IA Lung Adenocarcinoma.
- Wey HY, Desai VR, Duong TQ. [Epub ahead of print] A review of current imaging methods used in stroke research. Neurol Res. 2013 Aug 16.