Статья:

Обеспечение безопасности процесса переработки газового конденсата

Журнал: Научный журнал «Студенческий форум» выпуск №21(42)

Рубрика: Технические науки

Выходные данные
Бакаленко А.С., Шингаркина О.В. Обеспечение безопасности процесса переработки газового конденсата // Студенческий форум: электрон. научн. журн. 2018. № 21(42). URL: https://nauchforum.ru/journal/stud/42/41563 (дата обращения: 28.12.2024).
Журнал опубликован
Мне нравится
на печатьскачать .pdfподелиться

Обеспечение безопасности процесса переработки газового конденсата

Бакаленко Артур Сергеевич
студент, Уфимский государственный нефтяной технический университет, РФ, г. Уфа
Шингаркина Ольга Викторовна
доцент, канд. техн. наук, Уфимский государственный нефтяной технический университет, РФ, г. Уфа

 

Аннотация. В статье рассмотрены возможные аварийные ситуации, которые могут возникнуть при переработке газового конденсата, их опознавательные признаки и оптимальные способы противоаварийной защиты. Для предотвращения данных аварийных ситуаций предложено использовать систему прогнозирования и оценки безопасности ОПО с использованием комплексной модели обеспечения безопасности.

Ключевые слова: газовый конденсат, стабилизация, аварийные ситуации, безопасность, опасный производственный объект, прогнозирование.

Keywords: gas condensate, stabilization, emergencies, safety, hazardous production facilities prediction, forecasting.

 

Газоперерабатывающие предприятия относятся к промышленным объектам повышенной опасности и отличаются высокой аварийностью эксплуатируемых объектов, несовершенством систем управления технологическими процессами и противоаварийной защиты, износа оборудования.

Анализ характера и причин аварий в данной отрасли [1] показывает, что в последнее десятилетие большинство из них (около 95 %) связано со взрывами: 54% в аппаратуре, 46% в производственных зданиях и на открытых технологических площадках. Статистика показывает, что из общего количества взрывов в 42,5% случаев происходят взрывы сжиженных углеводородных газов. При залповых выбросах горючих 7 % не сопровождаются воспламенением, 35% завершаются взрывами, в 23% случаев взрывы сочетаются с пожарами, 34% сопровождаются только пожарами.

На основании анализа результатов технического расследования аварий на предприятиях отрасли [2] выявлены следующие основные причины и условия возникновения и развития аварий:

· пожаровзрывоопасные свойства применяемого сырья, конечных и побочных продуктов;

· аппаратное оформление – наличие на установке аппаратов, находящихся под давлением, высокая плотность расположения оборудования, значительные объёмы взрывоопасных материалов, находящихся в аппаратах;

· ведение процесса при сравнительно высоких давлениях (до 1,6 МПа) и высоких температурах (до 250 ºС);

· выход параметров технологического процесса за критические значения изменения давления, температуры, уровня жидкости, состава сырья, дозы и скорости подачи сырья;

· нарушение герметичности оборудования;

· неисправность средств регулирования и противоаварийной защиты процессов;

· непрофессиональные и ошибочные действия обслуживающего персонала, в том числе при проведении сварочных и ремонтных работ, неудовлетворительная ревизия состояния оборудования и трубопроводов;

· нарушение правил технической эксплуатации, а также некомпетентность при принятии решений в экстремальных ситуациях;

· невыполнение на предприятиях графиков планово-предупредительного ремонта оборудования, некачественный монтаж или ремонт оборудования;

· вероятность появления источника воспламенения.

Процесс переработки газового конденсата является пожаро- и взрывоопасным в связи с тем, что он связан с проведением процесса ректификации при повышенных температурах и давлении, а его продуктами являются пары углеводородов, большинство из которых имеют низкую температуру вспышки и в результате взаимодействия с кислородом воздуха образуют смеси, взрывающуюся при наличии огня или искры.

Сущность процесса заключается в стабилизации конденсата с получением углеводородных газов, сжиженной пропан-бутановой фракции (ПБФ) и стабильного конденсата - газового конденсата, получаемого путем очистки нестабильного газового конденсата от примесей и выделения из него углеводородов С-С [3]. На рисунке 1 представлена схема одного из технологических блоков установки стабилизации конденсата.

 

Рисунок 1. Схема технологического блока установки стабилизации конденсата

Т–101/1 – теплообменник, К–101/1 - ректификационная колонна, ВХ–101/1-3, ВХ–102/4– холодильники, Е-101/1 - емкость орошения, Н-101/1,2, H-102/1,2 - насосы

 

В ходе изучения эксплуатационной документации подобных объектов были выявлены возможные аварийные ситуации, которые могут возникнуть при осуществлении данного процесса:

· выход параметров процесса за предельно допустимые значения.

· разгерметизация оборудования через торцовые и сальниковые уплотнения, фланцевые соединения, разгерметизация колонной и емкостной аппаратуры, змеевиков печей.

· выброс продукта из разрушенных аппаратов, трубопроводов с образованием взрывоопасного облака

· пожар

· взрыв парогазовоздушной смеси

Ключевая роль в обеспечении безопасности от возможных аварий отводится системам противоаварийной защиты, позволяющим проводить постоянный мониторинг наиболее важных зон объекта, а в критических ситуациях выполнять необходимые действия для предотвращения серьезных последствий.

Система противоаварийной защиты является компонентом распределенной системы управления (РСУ), которая в свою очередь является компонентом автоматизированной системы управления технологическим процессом (АСУ ТП) опасного производственного объекта (ОПО).

Система противоаварийной защиты предназначена для предупреждения и предотвращения аварийных ситуаций, которые могут возникнуть во время технологических процессов как в результате влияния человеческого фактора, так и из-за сбоев в работе оборудования.

Она строится на специально сертифицированных для таких целей моделях программируемых контроллеров. Контроллеры имеют дублированную архитектуру, что в несколько раз повышает отказоустойчивость оборудования отвечающее за предотвращение аварийных ситуаций.

В случае возникновения опасности развития аварийной ситуации контроллеры противоаварийной защиты реализуют алгоритмы по предотвращению аварийных ситуаций в соответствии с правилами локализации аварийных, принятыми на предприятии.

Система противоаварийной защиты параллельно с основной системой автоматизированного управления следит за состояниями аварийных сигнальных датчиков. В случае срабатывания которых система ПАЗ разрывает управление задвижками и двигателями от основной автоматизированной системы управления, в результате чего они останавливаются или закрываются.

Не меньшую роль в обеспечении промышленной безопасности в нефтегазоперерабатывающей отрасли имеет прогнозирование возможных аварийных ситуаций с дальнейшим их предупреждением.

Современным способом решения данной задачи является внедрение системы прогнозирования и оценки безопасности опасного производственного объекта (ОПО) с использованием комплексной модели обеспечения безопасности [4]. На рисунке 2 представлена схема осуществления системы прогнозирования и оценки безопасности ОПО.

Данная система включает рабочую станцию оператора с программным обеспечением, позволяющим строить комплексную модель обеспечения безопасности, производить расчеты показателей безопасности, риска и эффективности, сервер, сеть передачи и сбора информации, контроллеры ввода-вывода информации, коммутатор, сервер АСУ ТП, подключенный к системе через локальную вычислительную сеть объединенной расчетной системы; инженерно-технические системы обеспечения безопасного функционирования объекта, подключенные через модули ввода-вывода, блок сбора и обработки информации по режимам функционирования и параметрам технологического процесса, блок сбора и обработки информации по показателям надежности функционирования элементов РСУ, АСУ ТП, ПАЗ, технологического оборудования, блок сбора и обработки информации по опасным составляющим объекта, авариям и аварийным инцидентам, база данных по проектным решениям, база данных по комплексной модели обеспечения безопасности; база данных по показателям надежности, база данных по опасным составляющим объекта, блок моделирования, расчетный блок, блок анализа и оценки результатов моделирования и расчета показателей; блок выработки альтернативных технических решений и блок принятия решений.

 

Рисунок 2. Схема осуществления системы прогнозирования и оценки безопасности ОПО с использованием комплексной модели обеспечения безопасности

 

Данный способ относится к автоматизированным системам управления безопасностью опасного производственного объекта и может быть использован на всех этапах жизненного цикла объекта, а именно при проектировании, строительстве, эксплуатации и ликвидации опасного производственного объекта.

Система отличается тем, что анализ надежности, безопасности и эффективности функционирования опасного производственного объекта осуществляется с помощью общего логико-вероятностного метода (ОЛВМ). В блоках сбора и обработки информации обработка данных осуществляется с помощью единых алгоритмов, адаптированных к специфике конкретного опасного производственного объекта и с учетом имеющейся у проектировщика дополнительной информации о свойствах проектируемой системы опасного производственного объекта.

Техническим результатом изобретения является оценка состояния безопасности объекта на основе анализа расчетов показателей безопасности и риска и выработка рекомендаций по проведению мероприятий, направленных на снижение вероятности возникновения аварий и масштабов их последствий.

В результате прогнозирования и оценки показателей безопасности выбирается наиболее безопасный вариант проектных решений и утверждается комплексная модель обеспечения безопасности, которая будет сопровождать объект на последующих этапах жизненного цикла [4]. 

Таким образом, внедрение данной системы позволит минимизировать риск возникновения аварий на опасном производственном объекте, даст возможность своевременно выявить «слабые места» в обеспечении промышленной безопасности, а также провести необходимые мероприятия, направленные на предупреждение аварий и несчастных случаев.

 

Список литературы:
1. Егоров А.Ф., Савицкая Т.В. Анализ риска, оценка последствий аварий и управление безопасностью химических, нефтеперерабатывающих и нефтехимических производств. - М.: КолосС, 2013. - 526 с.:
2. Васильев П.П. Безопасность жизнедеятельности. М.: ЮНИТИ, 2003. –188 с.
3. ГОСТ Р 54389-2011 Конденсат газовый стабильный. Технические условия
4. Патент РФ № 2013135966/08, 30.07.2013
5. Ганченко Павел Владимирович, Ибадулаев Даниил Владиславович, Космичев Василий Павлович, Лузанов Виктор Федорович, Обломский Сергей Борисович, Степанов Илья Владимирович. Система прогнозирования и оценки безопасности опасного производ-ственного объекта с использованием комплексной модели обеспечения безопасно-сти//Патент Российской Федерации № 2549514