Моделирование эффективности солнечного элемента на основе четырехслойной гетероструктуры AlGaAs/GaAs/GaAs/Ge
Секция: Технические науки
лауреатов
участников
лауреатов
участников
XXXIX Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: технические и математические науки»
Моделирование эффективности солнечного элемента на основе четырехслойной гетероструктуры AlGaAs/GaAs/GaAs/Ge
В данной работе будет представлено моделирование четырехслойного солнечного элемента на основе гетероструктуры AlGaAs/GaAs/GaAs/Ge c помощью общедоступной программы PC1D.Моделирование проводилось при стандартных условиях, температуры и освещения. Под стандартными (эталонными) условиями понимается температура 25°С, мощность излучения 1000 Вт/м2, и площадь устройства 110 см2. На рисунке 1 представлена структура данного солнечного элемента.
Рисунок 1. Структура четырехслойного солнечного элемента на основе гетероструктуры AlGaAs/GaAs/GaAs/Ge
Для поглощения фотонов в широкого спектра фотонов будут использоваться материалы с различной шириной запрещённых зон. В качестве верхнего слоя применяют наиболее широкозонные материалы AlGaAs, GaInP, AlInP и т.д. Слой AlGaAs в данной структуре служит для преобразования коротковолновой части (400 ... 670 нм) солнечного спектра. Далее в данной структуре слои GaAs служат для преобразования «среднего» участка (670 ... 900 нм) солнечного спектра, затем слой Ge – отвечает за преобразования ИК – части (900 ... 1650 нм) солнечного спектра [1;7;8]. Таким образом использования материалов с разной шириной запрещенных зон позволяет более эффективно использовать солнечное излучения. Постоянные решетки для AlGaAs (зависит от состава), GaAs и Ge равны 5,658 Å, 5.87 Å и 5,66 Å соответственно [4;5;9]. Как мы видим несоответствия параметров решеток данных материалов не значительна, что позволяет наращивать довольно «толстый» слой одного материала на другом материале без образования дислокаций которые приведут к ухудшению характеристик [6;9]. КПД данного устройства рассчитывалось с помощью формулы 1.
1)
где: Eff – КПД, %; S – площадь элемента, м2; E – мощность излучения, Вт/м2 (обычно 1000 Вт/м2); Wp – пиковая мощность элемента при 25оС, Вт.
При изменении степени легирования слоя AlGaAs рисунок 2 Na с 1017 до 1019 см-3 происходит, снижения производительности устройства. Что может быть объяснено, тем что происходит появление новых уровней и даже зон в разрешенных значений энергии в запрещенной зоне, ширина запрещенной зоны при этом уменьшается, что влияет на диапазон поглощаемых фотонов [1–3]. На рисунке 3 представлена зависимость производительности данного устройства от степени легирования слоя GaAs n – тип. С увеличением степени легирования Nd с 1017 до 1019 происходит повыщения КПД устройства с 28,36% до 31.036%. Данное повышения производительности устройства может быть связанно с изменением значения ширины запрещенной зоны в следствии высокой степени легирования как описывалось выше, и сдвиг преобразования «среднего» участка (670 ... 900 нм) солнечного спектра к более близкой к ИК – части. Таким образом фотоны с длиной волны которые не поглотились слоем GaAs p – тип, поглощаются слоем GaAs n – тип со степенью легирования Nd =1 1019, поскольку слой Ge не может эффективно поглотить ту часть фотонов которая поглощается слоем GaAs n – тип [3].
Рисунок 2. Зависимость КПД солнечного элемента от степени легирования слоя AlGaAs а) Na =1·1016 КПД‑ 30,99% б) Na =1·1019 КПД‑ 23,66%
Рисунок 3. Зависимость КПД солнечного элемента от степени легирования слоя GaAs а) Nd =1·1016 КПД‑ 28,36% б) Nd =1·1019 КПД‑ 31.036 %
Повышения площади устройства с 110 см2 позволяет повысить максимальную выходную мощность устройства с 3,409 Вт до 3,689 Вт рисунок 4. Увеличения площади устройства требует больших затрат при его производстве, при этом КПД устройства не изменяется. В данном устройстве было применено текстурирования фронтальной поверхности что позволило увеличить КПД устройства с 30,33% до 31.036%, за счет снижения оптический потерь и лучшей передачи фотонов в глубину материалов [3].
Рисунок 4.Зависимость ВАХ устройства от его площади а) при 110 см2 P=3,409 Вт б) при 120 см2 P = 3,689 Вт
В результате использования гетероструктуры на основе AlGaAs/GaAs/GaAs/Ge с различной шириной запрещенных зон, а также подбора степени легирования материалов и использования текстурирования фронтальной поверхности удалось достичь КПД солнечного элемента в 31.036%. В таблице 1 приведены основные технологические характеристики устройства.
Таблица 1.
Технологические характеристики устройства
Материал |
Толщина, мкм |
Степень легирования |
Тип проводимости |
AlGaAs |
0.2 |
1016 |
P |
GaAs |
2.1 |
1016 |
P |
GaAs |
1.3 |
1019 |
N |
Ge |
1,1 |
1017 |
N |